Mirror Symmetry for Concavex Vector Bundles on Projective Spaces

نویسنده

  • ARTUR ELEZI
چکیده

Let V + = ⊕i∈IO(ki) and V − = ⊕j∈JO(−lj) be vector bundles on P s with ki and lj positive integers. Suppose X ι →֒ Ps is the zero locus of a generic section of V + and Y is a projective manifold such that X j →֒ Y with normal bundle NX/Y = ι ∗(V −). The relations between Gromov-Witten theories of X and Y are studied here by means of a suitably defined equivariant Gromov-Witten theory in Ps. We apply mirror symmetry to the latter to evaluate the gravitational descendants of Y supported in X. Section 2 is a collection of definitions and techniques that will be used throughout this paper. In section 3, using an idea from Kontsevich, we introduce a modified equivariant Gromov-Witten theory in Ps corresponding to V = V + ⊕ V −. The corresponding D-module structure ([6],[15],[29]) is computed in section 4. It is generated by a single function J̃V . In general, the equivariant quantum product does not have a nonequivariant limit. It is shown in Lemma 4.1.1 that the generator J̃V does have a limit JV which takes values in H∗Pm[[q, t]]. It is this limit that plays a crucial role in this work. Let Y be a smooth, projective manifold. The generator JY of the pure Dmodule structure of Y encodes one-pointed gravitational descendents of Y . It takes values in the completion of H∗Y along the semigroup (Mori cone) of the rational curves of Y . The pullback map j∗ : H∗Y → H∗X extends to a map between the respective completions. In Theorem 4.2.2 we describe

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 99 7 Mirror Principle I

Abstract. We propose and study the following Mirror Principle: certain sequences of multiplicative equivariant characteristic classes on Kontsevich’s stable map moduli spaces can be computed in terms of certain hypergeometric type classes. As applications, we compute the equivariant Euler classes of obstruction bundles induced by any concavex bundles – including any direct sum of line bundles –...

متن کامل

Mirror Symmetry and Generalized Complex Manifolds

In this paper we develop a relative version of T-duality in generalized complex geometry which we propose as a manifestation of mirror symmetry. Let M be an n−dimensional smooth real manifold, V a rank n real vector bundle on M , and ∇ a flat connection on V . We define the notion of a ∇−semi-flat generalized complex structure on the total space of V . We show that there is an explicit bijectiv...

متن کامل

Notes on Mirror Symmetry

1 Equivariant Cohomology 1 1.1 Group cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Equivariant cohomology of topological spaces . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Equivariant vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Equivariant pushforward . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Cohomological Characterization of Vector Bundles on Multiprojective Spaces

We show that Horrock’s criterion for the splitting of vector bundles on Pn can be extended to vector bundles on multiprojective spaces and to smooth projective varieties with the weak CM property (see Definition 3.11). As a main tool we use the theory of n-blocks and Beilinson’s type spectral sequences. Cohomological characterizations of vector bundles are also showed.

متن کامل

Extensions of Vector Bundles and Rationality of Certain Moduli Spaces of Stable Bundles

In this paper, it is proved that certain stable rank-3 vector bundles can be written as extensions of line bundles and stable rank-2 bundles. As an application, we show the rationality of certain moduli spaces of stable rank-3 bundles over the projective plane P 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000